Software Requirements Specification (SRS)
Automotive Paint Defect Analysis Project

Authors: Stephen Alfa, Logan Arent, Colin Coppersmith, Sean Joseph, James Murray
Customer: General Motors
Instructor: James Daly

1 Introduction

This Software Requirements Specification (SRS) document is to provide a detailed
description of all software needed to complete the project. Each subsection in the document will
be elaborated further below. The purpose of the Section 1 is to give an overview of the entire
system, what purpose the project will serve, and lay the necessary groundwork for the rest of
the SRS. Section 2 will go into greater detail about how the system will behave, what
dependencies the system has, and what assumptions will have to be made to accomplish our
goal. Section 3 is all about our specific requirements for how we would like the system to look,
behave, and how we are meeting our goal. Section 4 is about modeling our system so when it is
designed, it will make sense how all of our classes behave, and other models will explain how
the system will look to the user. Section 5 is about the prototype we are creating for the system,
how to run it, and how it should be behaving (not yet implemented). Section 6 includes all of our
references needed throughout the SRS document (not yet applicable). Section 7 includes
information about our point of contact for this project, Professor James Daly.

1.1 Purpose

The purpose of the SRS document is to provide the necessary requirements for the team
of developers to complete their task, and outlines specifically how the team will meet their
goal(s). The intended audience is all of those directly involved with the project, including
developers, and project managers. Some models included in the document may be useful to the
clients, but the intended use for the SRS document is to outline the system and implementation
for the developer.

1.2 Scope

The scope of the project is to create a system to replace the current paper-based
process of recording paint defects and make creating reports on the defects a trivial task.

Benefits: The system will eliminate the need for paper records and save analysts a lot of the
time previously required to generate reports. The product will implement a way for analysts to
record the defects of a vehicle, including type, location, and severity information. The product
will also allow editing of data after it has been entered, and allow analysts to easily create daily,
weekly, and monthly reports as well as reports including a custom set of vehicles over a custom
time period. The product will support the analysis of paint defects over time and ensure the
security of the system by requiring user verification.

1.3 Definitions, acronyms, and abbreviations

The terms and abbreviations are as follows:
Analyst: User for the system, interacts with the system by marking on the vehicle models where
the paint defects are, the type of the defect, and the severity of these defects.

Data: Values to be input into the system that enables it to be able to generate a report, such as
location, type, and severity of the defect, or number of cars, etc.

Report: The diagram of the vehicle model displayed with defects that is outputted based on the
data provided. Includes a defect type legend, the analyst’s name, date, and other important
information, and may be generated based on time period. Can be at different checkpoints in the
assembly line as well, such as Prime Review, Polish Deck, etc.

Vehicle Model: Diagram of the types of cars that will be involved in our system. The models will
be different for each vehicle model (including GMC Acadia, Chevrolet Traverse, and Buick
Enclave), and for each different vehicle, the vehicle model will include a right vertical view, left
vertical view, and roof outline.

Abbreviations: Automotive Paint Defect (APD), Defects Per Unit (DPU)

1.4 Organization

The rest of the Software Requirements Specification will contain: the product perspective
(2.1), product functions (2.2), user characteristics (2.3), constraints (2.4), assumptions and
dependencies (2.5), approportioning of requirements (2.6), specific requirements (3), modeling
requirements (4), how to run the prototype (5.1), sample scenarios of running prototype (5.2),
references (6), and point of contact (7).

2 Overall Description

This section details the environment and functions of the product as well as who is
expected to use it. Constraints, assumptions made for development, and systems that the
product depends upon are addressed in this section. Finally, a division of requirements is
proposed, dividing features between the initial product and later versions.

2.1 Product Perspective

The product will be used in vehicle manufacturing plants. An analyst will use the system
to record paint defects while examining cars and later generate reports on these defects. These
reports are used to track daily rates of paint defects as well as trends in defects on the different
surfaces of the vehicles being manufactured. Examination of these trends can lead to
improvements in the manufacturing process. This system is diagrammed in Figure 1.

The product will have two main sides to it, one for recording paint defects and another
for generating reports on the defects. These sides will be used in different environments so they
have different constraints. When an analyst is recording paint defects, they will be on the
assembly line, moving around the car. This means they will be using a portable device, most
likely a tablet computer to record the defects. This will be a necessary change from the paper
and pencil system that is in place. Due to the nature of assembly lines, the analyst must be able
to record defects rapidly so the product is does not decrease the rate of production of the
assembly line. For the report creation side of the product, the user is expected to use a desktop
computer. The report creation process is designed to save the analyst time, so it needs to be
easy to use and efficient.

Per Vehicle Analyst Performs

Assembly Line Creates Vehicle Paint Defect
Analysis

Report
Generation and

Performs

Analysis

Vehicle Reports
froma
Vehicle Paint Time Period
Defect Report
Changes Vehicle Report
Storage

Assembly Plant

Perform— Assembly Line Identified Problems.

Workers

Improvements

2.2 Product Functions

Our product will save the analysts time by streamlining their workflow and allowing for
easy creation of reports. A list of functions taken from the Requirements Definition [1] follows:
1. Implement a way for analysts to record the defects of a vehicle, including type, location, and
severity information.

2. Allow editing of data after it has been entered.

3. Allow analysts to easily create daily, weekly, and monthly reports as well as reports
including a custom set of vehicles over a custom time period.

4. Support the analysis of paint defects over time.

5. Ensure the security of the system by requiring user verification.

2.3 User Characteristics

The users of our product will be paint defect analysts already employed at manufacturing
plants. The analysts will be skilled in identifying paint defects and their severity and familiar with
creating reports on these defects. The will be comfortable using a tablet computer with a
touch-screen interface as well as a desktop computer which they will have use to do tasks such
as downloading files and printing reports.

2.4 Constraints

This system does not have any safety critical components as it is merely keeping track of
reported defects and generating reports based on the reports. It might be detrimental to lose
data due to a system crash or a bug, but no one will be in mortal danger if a few days worth of
reports go to /dev/null.

If reports are not saved properly or reports get deleted, the system will not be able to
generate the reports. These mistakes would occur with a fundamental misunderstanding of the
way the system is functioning though. I'd recommend solid training in the reporting software to
prevent misuse of the forms. It might be good to build in some auto saving and undo
functionality to prevent loss of data.

2.5 Assumptions and Dependencies

This software will require a some type of computer to be present on the line when workers are
inspecting and recording defects. It will also require that the computer have a basic internet
browser installed on it as this software will exist as a web application. User interaction will be

primarily through forms. Either forms for data input, or forms for requesting different reports from
the logged data.

2.6 Approportioning of Requirements

This software is supposed to extend functionality to any arbitrary car model. It might be best to
focus on getting the report functionality working before looking at interfaces for adding new
vehicles to the reporting system. The software should be developed with that goal in mind,
however that functionality is not immediately required for the software to be useful to the client.

3 Specific Requirements

Give an enumerated list of requirements.
As appropriate, use a hierarchical numbering scheme.

1 Create Session
1.1 The analyst creates a session
1.2 The form to fill out becomes viewable
1.2 Analyst can now edit the form

2 Add Car
2.1 Form has option to add cars you want to generate a report on
2.2 Many cars and car models can be added

3 Add Defect
3.1 Each car added has a defect that will be entered in the form
3.2 Type, location, and severity of the defect are also entered

4 Add Report Time Interval
4.1 Reports can be generated for a specified amount of time
4.2 The analyst may enter any time interval into form

5 Generate Report
5.1 The report based on the data entered in the form is created
5.2 The report includes visual representations
5.3 The visuals shown include cars and defects
5.4 The report is generated for the specified time interval

6 Update Report
6.1 The analyst can go back and edit the form for a specific report
6.2 A new report is generated based on the new data

7 Remove Report
7.1 Reports can be deleted at any time

4 Modeling Requirements

Paint Impefection Systems

o 5
-—'—'_'_'_'_'_'_'_._'_._'_._'_F T
@ <cincludes>> .. odandss=
Generate Report
Analyst © Edit Imperfection

Use Case: Create Session

Actors: Analyst

Type: Primary and Essential

Description: The Analyst clicks a button on the screen to create a session. This is where the
analyst will input all imperfections for as many vehicles as they want. The analyst must select a
location here. Many sessions are used to generate a report, many cars are in a session, and
many imperfections are in a car.

Cross Ref.:

Use Case: Add Car

Actors: Analyst

Type: Secondary

Description: The Analyst clicks a button within the session screen to add a car. The Analyst will
select a type of car. Here, the user will add imperfections.

Cross Ref.:

Use-Cases: Analyst must have completed the Create Session use case.

Use Case: Edit Car

Actors: Analyst

Type: Secondary

Description: The Analyst can edit a car from the main session screen. Here, the Analyst can
make any necessary changes to a car, like add or edit imperfections as well. Special case of the
Add Car use case.

Cross Ref.:
Use-Cases: Analyst must have completed the Add Car use case.

Use Case: Add Imperfection

Actors: Analyst

Type: Secondary

Description: The Analyst a button on the screen to add as many imperfections as are
applicable to this car. The Analyst will select a location and severity of imperfection.
Cross Ref.:

Use-Cases: Analyst must have completed the Add Car or Edit Car use cases.

Use Case: Edit Imperfection

Actors: Analyst

Type: Secondary

Description: The Analyst can edit an imperfection from the add car or edit car screen. Here, the
Analyst can make any necessary changes to an imperfection, like change location or severity.
Special case of the Add Imperfection use case.

Cross Ref.:

Use-Cases: Analyst must have completed the Add Imperfection use case.

Use Case: Generate Report

Actors: Analyst

Type: Primary and Essential

Description: The Analyst clicks a button on the main screen to generate a report. From here,
the Analyst will select a type of report that they want to generate, and the Analyst may select a
time frame or certain number of sessions in order to generate a report. The Analyst must also
select a location for which plant the report will be generated from.

Cross Ref.:

Use-Cases: Analyst must have completed the Create Session use case.

Visugl ngpeétw;)v(

-name : string

Edition(Sean Joseph(Michigan State

1

Sessions

nverSasgsion

Region

Inspector

*

%

-start : datetime
-end : datetime

1. *

Report

Report

Session 1

Car

* Cars

Car

Region | 1

Regions

* @ Defects

Defect
-type : string
-severity : int

-color : string

Sessions

-start : datetime
-end : datetime

DailyReport

MonthlyReport

YearlyReport

In the scenario depicted below, an Analyst accesses the interface for our product. He
then creates a recording session (this is the Create Session use case) and inputs the necessary

information. Within this session, he adds a car (the Add Car use case) and records its

information and then adds an imperfection (the Add Imperfection use case). He records the
imperfection details and closes out of the imperfection and car screens. Then he decides to edit
the imperfection he just made, so he selects the car he just added and chooses to edit it (the
Edit Car use case) and does the same for the imperfection he created (the Edit Imperfection use
case). While editing the imperfection, he changes the data he needed to change and closes out
of the imperfection and car views. Throughout the process, the system saves the session to the
database, ensuring that no data will be lost even if the session view is not completed properly.

A Recording . An Imperfection The Session
Analyst Interface Session :Session A Car iCar :Imperfection Table :SessTab

T T T T
= | | | |
I I I I
| | | |
Create a M
New Session™ ™ | [[
lg—Open Sess. View- [[[
Input Session . |
P Info : — [Create New Session with Session Info in Table
o — = —— I o e Successful Creation — —
Create New Car !
——Add Car—pn | 1
and Add to Session [[
la—Open Car View— | |
—Input Car Info———pm I I
Add an Inperfection—sm _Nc;:ﬁ:pl':fe;‘:g > I
- Open Imperfection View— [
Input Imperfection Info |
Done Editing e |
Close Imperfection View. |
Done Editing——p»
g Notify Car is Done. I I
Update Session] -
-t Close Car View j
€ — — — — — — — L — — —Successful Update- — — — — — —
Select Car—ps | | |
lg—Car Selected—
| Edit Car—p» Load Car— g | | |
lg—Open Car View— | |
Select Imperfection—pm
Edit Imperfection—| | Load Imperfection—p |
Open Imperfection View-| |
Edit Imperfection Infops |
Done Editing |
- Close Imperfection View I :
Done Editing— s | |
rtMotify Car is Done | |
Update Session [2
le-Close Car View———__ |
I Successful Update. I
| Done Editing— - | | |
| Close Session | | |
View, Notify | | | |
Session is Saved | | | |
I I I I
| | | |
1 I 1 I

In the second scenario, diagrammed below, an analyst creates a report using our system
(the Generate Report use case). They tell the system they want to create a report, input the
information for the report including which plant the report is for and a title of the report. Then
they select the imperfection recording sessions that they want to create the report on and
generate and save the report. The session table is accessed to get information about sessions
for selection and to retrieve the selected sessions themselves.

The Session

Analyst Interface A Report :Report Table :SessTab

Create a
New Report

t4—————Open Report View.
Input Report Info

o

(Location, Title) L
—Select Sessions S Request for a Sessions List
l«——Open Selector- i} Respose with the Sessions List.
————Choose Sessions——— = | Request for Selected Sessions

Save Sessions
Close Selector

———Generate Report——p
t¢——Provides Report
Saves Report——— ———p

- Response with Sessions

Done with Report——

tq¢——Close Report View—.r
I
'Bession Created
b
Home ‘] Create Session Hl‘ Session ‘]
=
}[)] i
| | | Edit Car Done Editing
Create Report ;
i po Car Addad Add Car Edit Data

- Editing Data -
-

Generating -
Collecting Data
TR oliecting Da }::
r /|\ /|\ | | Imperfection Removed
Remove Imperfection
Remove Done Done Select 1 orfoction Added Add Imperfection i

Selecting Sessions [Inputting Irr'.perfecti-::-n]

The state diagram begins in the Home state, and from there you can either generate a
report or create a session. In order to generate reports, you must have created multiple
sessions to draw off of first. When generating a report you can add or remove as many sessions
as you want to generate from. When in the Session state, you can either add or edit a car. Both

adding and editing car then execute the same states, but a car must be created first before you
can edit it.

5 Prototype

The initial prototype will have the Ul implemented but it will not create reports or store
session data in a database. The prototype does exist at this time so the rest of section 5 has
been omitted from this draft.

6 References

Documents can be obtained from the website cited as [2].

[1] S. Alfa, L. Arent, C. Coppersmith, S. Joseph, and J. Murray, “Requirements Definition,”
November 2017.

[2] Joseph, Sean. CSE 435 Group 6. Oct 2017, www.egr.msu.edu/~joseph62/cse435

7 Point of Contact

For further information regarding this document and project, please contact Prof. James Daly
at Michigan State University (dalyjame at cse.msu.edu). All materials in this document have
been sanitized for proprietary data. The students and the instructor gratefully acknowledge the
participation of our industrial collaborators.

